Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0297898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743682

RESUMEN

This article delves into examining exact soliton solutions within the context of the generalized nonlinear Schrödinger equation. It covers higher-order dispersion with higher order nonlinearity and a parameter associated with weak nonlocality. To tackle this equation, two reputable methods are harnessed: the sine-Gordon expansion method and the [Formula: see text]-expansion method. These methods are employed alongside suitable traveling wave transformation to yield novel, efficient single-wave soliton solutions for the governing model. To deepen our grasp of the equation's physical significance, we utilize Wolfram Mathematica 12, a computational tool, to produce both 3D and 2D visual depictions. These graphical representations shed light on diverse facets of the equation's dynamics, offering invaluable insights. Through the manipulation of parameter values, we achieve an array of solutions, encompassing kink-type, dark soliton, and solitary wave solutions. Our computational analysis affirms the effectiveness and versatility of our methods in tackling a wide spectrum of nonlinear challenges within the domains of mathematical science and engineering.


Asunto(s)
Dinámicas no Lineales , Modelos Teóricos , Algoritmos , Simulación por Computador
2.
PLoS One ; 19(1): e0296678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38295122

RESUMEN

The stochastic nonlinear Schrödinger model (SNLSM) in (1+1)-dimension with random potential is examined in this paper. The analysis of the evolution of nonlinear dispersive waves in a totally disordered medium depends heavily on the model under investigation. This study has three main objectives. Firstly, for the SNLSM, derive stochastic precise solutions by using the modified Sardar sub-equation technique. This technique is efficient and intuitive for solving such models, as shown by the generated solutions, which can be described as trigonometric, hyperbolic, bright, single and dark. Secondly, for obtaining numerical solutions to the SNLSM, the algorithms described here offer an accurate and efficient technique. Lastly, investigate the phase plane analysis of the perturbed and unperturbed dynamical system and the time series analysis of the governing model. The results show that the numerical and analytical techniques can be extended to solve other nonlinear partial differential equations in physics and engineering. The results of this study have a significant impact on how well we comprehend how solitons behave in physical systems. Additionally, they may serve as a foundation for the development of improved numerical techniques for handling challenging nonlinear partial differential equations.


Asunto(s)
Algoritmos , Ingeniería , Simulación por Computador , Intuición , Examen Físico
3.
Sci Rep ; 13(1): 22204, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097756

RESUMEN

The steady two-dimension (2D) ternary nanofluid (TNF) flow across an inclined permeable cylinder/plate is analyzed in the present study. The TNF flow has been examined under the consequences of heat source/sink, permeable medium and mixed convection. For the preparation of TNF, the magnesium oxide (MgO), cobalt ferrite (CoFe2O4) and titanium dioxide (TiO2) are dispersed in water. The rising need for highly efficient cooling mechanisms in several sectors and energy-related processes ultimately inspired the current work. The fluid flow and energy propagation is mathematically described in the form of coupled PDEs. The system of PDEs is reduced into non-dimensional forms of ODEs, which are further numerically handled through the Matlab package (bvp4c). It has been observed that the results display that the porosity factor advances the thermal curve, whereas drops the fluid velocity. The effect of heat source/sink raises the energy field. Furthermore, the plate surface illustrates a leading behavior of energy transport over cylinder geometry versus the variation of ternary nanoparticles (NPs). The energy dissemination rate in the cylinder enhances from 4.73 to 11.421%, whereas for the plate, the energy distribution rate boosts from 6.37 to 13.91% as the porosity factor varies from 0.3 to 0.9.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...